MINVERSE funkció az Excelben
A MINVERSE az Excelben a „Matrix Inverse” rövidítése. Ez a beépített excel függvény az adott mátrixot ugyanolyan tömbökkel inverz mátorrá alakítja.
Miután beszéltünk az „inverz mátrixról”, meg kell értenünk, hogy miről is szól pontosan az „inverz mátrix”.
Inverz mátrix: A szám reciprokát inverz mátrixnak nevezzük. Például az 5. számra a reciprokot írhatjuk
Tehát az inverz mátrix ugyanabba a logikába írható, ha ezt az „A -1 ” egyenletet használjuk, és a fenti számot is írhatjuk 5 -1- nek. Ha egy számot szorzunk meg a kölcsönösével, akkor mindig 1- et kapunk. Például az 5-ös számot megszorozzuk annak kölcsönös 1/5-ével, az eredményt 13-ként kapjuk meg
Hasonlóképpen, amikor egy mátrixot inverzével szorzunk, megkapjuk az identitásmátrixot, azaz „I” -t. Az alábbiakban bemutatjuk az identitásmátrix egyenletét.
A * A -1 = I
Amikor az inverz mátrixról beszélünk, meg kell vizsgálnunk az identitásmátrixot is. Azonosító mátrix segítségével a sorok és oszlopok száma egyenlő, átlósan 1-et kapunk, és az átlótól eltekintve minden más nullával egyenlő lesz.
Tehát az identitásmátrix mindig ilyen „2 * 2, 3 * 3, 4 * 4” formában lesz .
Ha a mátrix megfordult, akkor az MMULT függvény használatával tudjuk ellenőrizni, hogy fordított-e vagy sem, és kapunk egy identitásmátrixot, és így néz ki.
Ok, most próbáljuk ki ezeket a dolgokat az excellel.
Példa a MINVERSE Excel függvény használatára
Vessen egy pillantást például az alábbi 3 * 3 mátrixra.
- Mátrixszámunk van A2-től C4-ig, ennek a mátrixnak a megfordításához hozzon létre egy azonos táblázatot a fenti táblázat mellett, de ne tartsa ugyanazokat az értékeket, és a mezőt üresen hagyja.
- Az E2 – G4 tartományban a mátrix inverzét fogjuk létrehozni. Válassza ki az E2 és G4 közötti cellatartományt.
- Most a kiválasztott cellatartományban nyissa meg az excel MINVERSE funkciót.
- A MINVERSE függvény első argumentuma a tömb, vagyis ez nem más, mint a mátrixértékek tartománya, amelyet megpróbálunk megfordítani, így a 3 * 3 mátrixértékeink az A2 és a C4 tartományba esnek.
Mielőtt bezárnánk a képletet, az egyik dolgot, amelyet szem előtt kell tartanunk, a „MINVERSE” egy tömb, ezért le kell zárnunk a képletet a „CSE” billentyűk segítségével.
Megjegyzés: A CSE jelentése „Ctrl + Shift + Enter” . Tehát az összes tömbképletet csak ezek a kulcsok zárják le.- Tehát zárja be a képletet az ENTER billentyű lenyomásával, miközben a „Ctrl + Shift” billentyűt együtt tartja.
Amint a fentiekből látható, a MINVERSE függvény használatával „inverz mátrixot” kaptunk. Mivel tömbképletről van szó, a tömbképlet elején és végén göndör zárójeleket láthatunk (()) .
Most az MMULT függvény segítségével ellenőrizhetjük, hogy ez a mátrix fordított-e vagy sem. Az MMULT függvény a „Matrix Multiplication” rövidítést jelenti.
- Most válassza ki a cellák tartományát egy másik identitásmátrix létrehozásához, ezért válassza ki a 3 * 3 mátrix területet.
- Most nyissa meg az MMULT funkciót a kiválasztott cellatartományhoz.
- Az MMULT függvény array1 argumentumához válassza ki a „Matrix 1” tartományt A2 és C4 között.
- Az MMULT függvény array2 argumentumához válassza az „Inverse Matrix” cellatartományt E2-től G4-ig.
- Az MMULT egy tömbfüggvény is, ezért zárja be a képletet a „CSE” billentyűk használatával az átalakításra tömbfunkcióvá.
- Ez az eredmény decimális eredményeket adott nekünk, ezért használja a tömbfüggvényen belül található ROUND függvényt a pontos „identitásmátrix” megszerzéséhez.
Most kaptunk egy „azonossági mátrixot”, ahol 1 van átlós érték. Így használhatjuk a MINVERSE függvényt a mátrix és az MMULT megfordítására, hogy ellenőrizzük, hogy megfordult-e vagy sem.
Dolgok, amikre emlékezni kell
- A MINVERSE függvény egyszerre csak egy mátrixot képes elfogadni.
- Ez egy tömbfüggvény az excelben, ezért a képlet bezárásához használja a „CSE” gombokat.
- Amikor a mátrix inverz, akkor az MMULT függvény segítségével megtalálhatjuk az identitásmátrixot, ahol meg kell szorozni az eredeti mátrixot az inverz mátrixszal.